SURFACE-Bind
  • Home
  • Analysis
  • Protein Families
    • Enzymes
    • Receptors
    • Transporters
    • Miscellaneous
    • Unclassified
    • Unmatched
  • About
  1. Unclassified
  2. P09603

  • Unclassified
    • A0FGR9
    • A0PK11
    • A6NC51
    • A6ND01
    • A6NDP7
    • A6NDV4
    • A6NFA1
    • A6NFX1
    • A6NGU5
    • A6NHS7
    • A6NIM6
    • A6NKB5
    • A7MBM2
    • A8MVS5
    • A8MVW0
    • A8MVW5
    • A8MXK1
    • B3SHH9
    • B4DS77
    • B6A8C7
    • B8ZZ34
    • O00526
    • O00592
    • O14511
    • O14525
    • O14788
    • O14944
    • O15165
    • O43291
    • O43490
    • O43493
    • O43921
    • O43934
    • O60279
    • O60500
    • O60609
    • O75121
    • O75129
    • O75443
    • O75445
    • O75487
    • O75882
    • O94779
    • O95150
    • O95196
    • O95274
    • O95497
    • O95498
    • O95866
    • O95867
    • O95868
    • P0CG37
    • P0DP58
    • P0DPA2
    • P08F94
    • P01135
    • P01730
    • P01732
    • P04156
    • P04233
    • P04921
    • P05067
    • P05362
    • P05538
    • P06729
    • P07204
    • P07911
    • P09326
    • P09564
    • P09603
    • P09693
    • P09758
    • P10747
    • P10966
    • P11717
    • P11912
    • P13385
    • P13598
    • P13726
    • P14207
    • P15328
    • P15391
    • P15514
    • P15529
    • P15941
    • P16070
    • P16150
    • P16284
    • P16410
    • P16422
    • P17643
    • P17813
    • P18627
    • P19256
    • P19320
    • P19440
    • P20023
    • P20645
    • P20827
    • P21583
    • P21754
    • P22303
    • P22794
    • P23510
    • P24071
    • P28906
    • P29965
    • P30203
    • P32970
    • P32971
    • P33681
    • P34910
    • P35070
    • P35613
    • P37088
    • P40200
    • P40259
    • P40967
    • P41597
    • P42658
    • P43121
    • P43307
    • P47871
    • P48023
    • P48060
    • P49768
    • P49771
    • P49810
    • P51168
    • P51170
    • P51172
    • P51674
    • P51681
    • P51693
    • P52797
    • P52798
    • P52803
    • P53801
    • P55082
    • P55259
    • P58335
    • P58418
    • P58658
    • P60201
    • P60852
    • P78348
    • P78423
    • Q0P6H9
    • Q1HG43
    • Q2KHT4
    • Q2M385
    • Q3KNS1
    • Q3KNT9
    • Q3ZCQ3
    • Q4G0T1
    • Q5DID0
    • Q5FWE3
    • Q5HYA8
    • Q5JRV8
    • Q5SQ64
    • Q5SSG8
    • Q5SZK8
    • Q5T4F4
    • Q5VU65
    • Q5VUB5
    • Q5VV43
    • Q5VV63
    • Q5VX71
    • Q5VZ72
    • Q6GTX8
    • Q6GV28
    • Q6MZM0
    • Q6N075
    • Q6NUS6
    • Q6P1J6
    • Q6P4Q7
    • Q6P9G4
    • Q6P995
    • Q6PCB8
    • Q6PIZ9
    • Q6PJF5
    • Q6UVK1
    • Q6UW56
    • Q6UW88
    • Q6UWB1
    • Q6UWJ1
    • Q6UWL2
    • Q6UWN5
    • Q6UX01
    • Q6UX71
    • Q6UX82
    • Q6UXB8
    • Q6UXC1
    • Q6UXD5
    • Q6UXU4
    • Q6UXV0
    • Q6UXZ0
    • Q6ZMB5
    • Q6ZMJ2
    • Q6ZNA5
    • Q6ZP29
    • Q6ZP80
    • Q6ZRH7
    • Q6ZSS7
    • Q6ZTQ4
    • Q6ZUK4
    • Q6ZVL6
    • Q6ZVN8
    • Q6ZW05
    • Q7RTM1
    • Q7Z2K6
    • Q7Z3B1
    • Q7Z3C6
    • Q7Z3D4
    • Q7Z3F1
    • Q7Z6A9
    • Q7Z7M0
    • Q7Z7N9
    • Q7Z402
    • Q7Z553
    • Q8IUH8
    • Q8IUK5
    • Q8IUW5
    • Q8IW00
    • Q8IWD5
    • Q8IWV2
    • Q8IYR6
    • Q8IZF0
    • Q8J025
    • Q8N0Z9
    • Q8N1N2
    • Q8N2G4
    • Q8N3F9
    • Q8N7C4
    • Q8N7P1
    • Q8N7X8
    • Q8N8F7
    • Q8N8Z6
    • Q8N131
    • Q8N271
    • Q8N387
    • Q8N441
    • Q8N608
    • Q8NA29
    • Q8NAU1
    • Q8NBL3
    • Q8NBM4
    • Q8NBN3
    • Q8NBR0
    • Q8NBT3
    • Q8NC42
    • Q8NC54
    • Q8NC67
    • Q8NCG7
    • Q8NCL8
    • Q8NCW0
    • Q8ND94
    • Q8NE01
    • Q8NE79
    • Q8NEA5
    • Q8NET5
    • Q8NFP4
    • Q8NFT8
    • Q8NFZ8
    • Q8NGA4
    • Q8NH89
    • Q8NI32
    • Q8TB96
    • Q8TBE3
    • Q8TBP5
    • Q8TCT9
    • Q8TCW7
    • Q8TDF5
    • Q8TDQ0
    • Q8TEB7
    • Q8TEM1
    • Q8TEQ8
    • Q8WTR4
    • Q8WV15
    • Q8WVN6
    • Q8WVP7
    • Q8WWF5
    • Q8WWG1
    • Q8WXI7
    • Q8WZ71
    • Q9BQ51
    • Q9BQS7
    • Q9BRK3
    • Q9BSN7
    • Q9BWQ8
    • Q9BX67
    • Q9BX97
    • Q9BXJ7
    • Q9BY79
    • Q9BYF1
    • Q9BZV3
    • Q9BZW8
    • Q9BZZ2
    • Q9C0I4
    • Q9H0V9
    • Q9H1E5
    • Q9H1U4
    • Q9H3R2
    • Q9H5I5
    • Q9H5V8
    • Q9H6D8
    • Q9H6L2
    • Q9H6X2
    • Q9H6Y7
    • Q9H8M5
    • Q9H9P2
    • Q9H195
    • Q9H295
    • Q9H330
    • Q9H665
    • Q9HBG7
    • Q9HBV2
    • Q9HC73
    • Q9HCC8
    • Q9HCJ1
    • Q9HCN6
    • Q9NPF0
    • Q9NPR9
    • Q9NPY3
    • Q9NQ25
    • Q9NQ34
    • Q9NQ60
    • Q9NR16
    • Q9NRR2
    • Q9NS62
    • Q9NS93
    • Q9NU53
    • Q9NUM4
    • Q9NUN5
    • Q9NV12
    • Q9NX61
    • Q9NY35
    • Q9NY37
    • Q9NYX4
    • Q9NZ53
    • Q9NZQ7
    • Q9NZV1
    • Q9P0T7
    • Q9P0V8
    • Q9P2B2
    • Q9P121
    • Q9P232
    • Q9UBS9
    • Q9UGT4
    • Q9UHC9
    • Q9UIB8
    • Q9UIK5
    • Q9UJ14
    • Q9UJ42
    • Q9UJQ1
    • Q9UKB5
    • Q9UKJ0
    • Q9UKJ1
    • Q9UKY0
    • Q9ULC0
    • Q9ULI3
    • Q9ULK6
    • Q9UM73
    • Q9UMF0
    • Q9UNN8
    • Q9UPI3
    • Q9UPZ6
    • Q9UQ52
    • Q9UQC9
    • Q9Y3P8
    • Q9Y4D2
    • Q9Y5F6
    • Q9Y5F7
    • Q9Y5G9
    • Q9Y5H2
    • Q9Y5I4
    • Q9Y5Y0
    • Q9Y5Y7
    • Q9Y6W8
    • Q9Y275
    • Q9Y487
    • Q9Y493
    • Q9Y625
    • Q9Y639
    • Q14CN2
    • Q14CZ8
    • Q17R55
    • Q17RY6
    • Q53EL9
    • Q68D85
    • Q68DH5
    • Q68DV7
    • Q75T13
    • Q86SP6
    • Q86SU0
    • Q86T13
    • Q86TG1
    • Q86UK5
    • Q86UP6
    • Q86UW1
    • Q86UW2
    • Q86V40
    • Q86V85
    • Q86VB7
    • Q86W33
    • Q86WC4
    • Q86WI1
    • Q86XM0
    • Q86XR5
    • Q86XT9
    • Q86XX4
    • Q86YD3
    • Q86YD5
    • Q96A25
    • Q96A28
    • Q96AP7
    • Q96BF3
    • Q96D42
    • Q96DD7
    • Q96DU3
    • Q96F05
    • Q96F81
    • Q96FE7
    • Q96FL8
    • Q96J42
    • Q96K49
    • Q96L08
    • Q96MU8
    • Q96N19
    • Q96NR3
    • Q96PB1
    • Q96PD2
    • Q96PJ5
    • Q96RD6
    • Q96RD7
    • Q96RD9
    • Q96RV3
    • Q685J3
    • Q969N2
    • Q969W9
    • Q01151
    • Q02246
    • Q02297
    • Q02505
    • Q03167
    • Q04900
    • Q05996
    • Q06481
    • Q08722
    • Q10589
    • Q12770
    • Q12836
    • Q12860
    • Q12907
    • Q13145
    • Q13286
    • Q13291
    • Q13449
    • Q13488
    • Q13491
    • Q13586
    • Q13740
    • Q14118
    • Q14773
    • Q14956
    • Q14982
    • Q15116
    • Q16553
    • Q16651
    • Q16653
    • Q30201
    • Q92508
    • Q92542
    • Q92824
    • Q92838
    • Q95460
    • Q99075
    • Q99102

  • Unclassified

On this page

  • General information
  • AlphaFold model
  • Surface representation - binding sites
  • All detected seeds aligned
  • Seed scores per sites
  • Binding site metrics
  • Binding site sequence composition
  • Download
  1. Unclassified
  2. P09603

P09603

Author

Hamed Khakzad

Published

August 10, 2024

General information

Code
import requests
import urllib3
urllib3.disable_warnings()

def fetch_uniprot_data(uniprot_id):
    url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.json"
    response = requests.get(url, verify=False)  # Disable SSL verification
    response.raise_for_status()  # Raise an error for bad status codes
    return response.json()

def display_uniprot_data(data):
    primary_accession = data.get('primaryAccession', 'N/A')
    protein_name = data.get('proteinDescription', {}).get('recommendedName', {}).get('fullName', {}).get('value', 'N/A')
    gene_name = data.get('gene', [{'geneName': {'value': 'N/A'}}])[0]['geneName']['value']
    organism = data.get('organism', {}).get('scientificName', 'N/A')
    
    function_comment = next((comment for comment in data.get('comments', []) if comment['commentType'] == "FUNCTION"), None)
    function = function_comment['texts'][0]['value'] if function_comment else 'N/A'

    # Printing the data
    print(f"UniProt ID: {primary_accession}")
    print(f"Protein Name: {protein_name}")
    print(f"Organism: {organism}")
    print(f"Function: {function}")

# Replace this with the UniProt ID you want to fetch
uniprot_id = "P09603"
data = fetch_uniprot_data(uniprot_id)
display_uniprot_data(data)
UniProt ID: P09603
Protein Name: Macrophage colony-stimulating factor 1
Organism: Homo sapiens
Function: Cytokine that plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of pro-inflammatory chemokines, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone development. Required for normal male and female fertility. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration. Plays a role in lipoprotein clearance

More information:   

AlphaFold model

Surface representation - binding sites

The computed point cloud for pLDDT > 0.6. Each atom is sampled on average by 10 points.

To see the predicted binding interfaces, you can choose color theme “uncertainty”.

  • Go to the “Controls Panel”

  • Below “Components”, to the right, click on “…”

  • “Set Coloring” by “Atom Property”, and “Uncertainty/Disorder”

All detected seeds aligned

Seed scores per sites

Code
import re
import pandas as pd
import os
import plotly.express as px

ID = "P09603"
data_list = []

name_pattern = re.compile(r'name: (\S+)')
score_pattern = re.compile(r'score: (\d+\.\d+)')
desc_dist_score_pattern = re.compile(r'desc_dist_score: (\d+\.\d+)')

directory = f"/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/Surfaceome_top100_per_site/{ID}_A"

for filename in os.listdir(directory):
    if filename.startswith("output_sorted_") and filename.endswith(".score"):
        filepath = os.path.join(directory, filename)
        with open(filepath, 'r') as file:
            for line in file:
                name_match = name_pattern.search(line)
                score_match = score_pattern.search(line)
                desc_dist_score_match = desc_dist_score_pattern.search(line)
                
                if name_match and score_match and desc_dist_score_match:
                    name = name_match.group(1)
                    score = float(score_match.group(1))
                    desc_dist_score = float(desc_dist_score_match.group(1))
                    
                    simple_filename = filename.replace("output_sorted_", "").replace(".score", "")
                    data_list.append({
                        'name': name[:-1],
                        'score': score,
                        'desc_dist_score': desc_dist_score,
                        'file': simple_filename
                    })

data = pd.DataFrame(data_list)

fig = px.scatter(
    data,
    x='score',
    y='desc_dist_score',
    color='file',
    title='Score vs Desc Dist Score',
    labels={'score': 'Score', 'desc_dist_score': 'Desc Dist Score'},
    hover_data={'name': True}
)

fig.update_layout(
    legend_title_text='File',
    legend=dict(
        yanchor="top",
        y=0.99,
        xanchor="left",
        x=1.05
    )
)

fig.show()

Binding site metrics

Code
import pandas as pd
pd.options.mode.chained_assignment = None
import plotly.express as px

df_total = pd.read_csv('/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/database/df_flattened.csv')
df_plot = df_total[df_total['acc_flat'] == ID]
df_plot ['Total seeds'] = df_plot.loc[:,['seedss_a','seedss_b']].sum(axis=1)
df_plot.loc[:, ["acc_flat", "main_classs", "sub_classs", "seedss_a", "seedss_b", "areass", "bsss", "hpss"]]
acc_flat main_classs sub_classs seedss_a seedss_b areass bsss hpss
1034 P09603 Unclassified Unclassified 124 113 1503.939163 142 2.29999
1035 P09603 Unclassified Unclassified 37 402 1296.291524 23 33.90000
Code
import math
import matplotlib.pyplot as plt

features = ['seedss_a', 'seedss_b', 'areass', 'hpss']
titles = ['Alpha seeds', 'Beta seeds', 'Area', 'Hydrophobicity']
num_features = len(features)

if len(df_plot) > 8:
    num_rows = 2
    num_cols = 2
else:
    num_rows = 1
    num_cols = 4

fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(9, num_rows * 5))

axes = axes.flatten()
positions = range(1, len(df_plot) + 1)

for i, feature in enumerate(features):
    title = titles[i]
    axes[i].bar(positions, df_plot[feature], color=['blue', 'orange', 'green', 'red', 'purple', 'brown'])
    axes[i].set_title(title, fontsize=13)
    axes[i].set_xticks(positions)
    axes[i].set_xticklabels(df_plot['bsss'], rotation=90)
    axes[i].set_xlabel("Center residues", fontsize=13)
    axes[i].set_ylabel(title, fontsize=13)

for j in range(len(features), len(axes)):
    fig.delaxes(axes[j])

plt.tight_layout()
plt.show()

Binding site sequence composition

Code
amino_acid_map = {
    'ALA': 'A', 'ARG': 'R', 'ASN': 'N', 'ASP': 'D', 'CYS': 'C',
    'GLN': 'Q', 'GLU': 'E', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I',
    'LEU': 'L', 'LYS': 'K', 'MET': 'M', 'PHE': 'F', 'PRO': 'P',
    'SER': 'S', 'THR': 'T', 'TRP': 'W', 'TYR': 'Y', 'VAL': 'V'
}

from collections import Counter
from ast import literal_eval
from matplotlib.gridspec import GridSpec
import warnings
warnings.filterwarnings("ignore", message="Attempting to set identical low and high xlims")

def convert_to_single_letter(aa_list):
    if type(aa_list) == str:
        aa_list = literal_eval(aa_list)
    return [amino_acid_map[aa] for aa in aa_list]

def create_sequence_visualizations(df, max_letters_per_row=20):
    for idx, row in df.iterrows():
        bsss = row['bsss']
        AAss = row['AAss']
        single_letter_sequence = convert_to_single_letter(AAss)
        
        freq_counter = Counter(single_letter_sequence)
        total_aa = len(single_letter_sequence)
        frequencies = {aa: freq / total_aa for aa, freq in freq_counter.items()}
        
        cmap = plt.get_cmap('viridis')
        norm = plt.Normalize(0, max(frequencies.values()) if frequencies else 1)
        
        n_rows = (len(single_letter_sequence) + max_letters_per_row - 1) // max_letters_per_row
        fig = plt.figure(figsize=(max_letters_per_row * 0.6, n_rows * 1.2 + 0.5))
        
        gs = GridSpec(n_rows + 1, 1, height_ratios=[1] * n_rows + [0.1], hspace=0.3)
        
        for row_idx in range(n_rows):
            start_idx = row_idx * max_letters_per_row
            end_idx = min((row_idx + 1) * max_letters_per_row, len(single_letter_sequence))
            ax = fig.add_subplot(gs[row_idx, 0])
            ax.set_xlim(0, max_letters_per_row)
            ax.set_ylim(0, 1)
            ax.axis('off')
            
            for i, aa in enumerate(single_letter_sequence[start_idx:end_idx]):
                freq = frequencies[aa]
                color = cmap(norm(freq))
                ax.text(i + 0.5, 0.5, aa, ha='center', va='center', fontsize=24, color=color, fontweight='bold')
        
        cbar_ax = fig.add_subplot(gs[-1, 0])
        sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
        sm.set_array([])
        cbar = plt.colorbar(sm, cax=cbar_ax, orientation='horizontal')
        cbar.set_label('Frequency', fontsize=12)
        cbar.ax.tick_params(labelsize=12)
        
        plt.suptitle(f"Center residue {bsss}", fontsize=14)
        plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
        plt.show()
            
create_sequence_visualizations(df_plot)

Download

To download all the seeds and score files for this entry Click Here!

P09564
P09693