Code
import requests
import urllib3
urllib3.disable_warnings()
def fetch_uniprot_data(uniprot_id):
= f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.json"
url = requests.get(url, verify=False) # Disable SSL verification
response # Raise an error for bad status codes
response.raise_for_status() return response.json()
def display_uniprot_data(data):
= data.get('primaryAccession', 'N/A')
primary_accession = data.get('proteinDescription', {}).get('recommendedName', {}).get('fullName', {}).get('value', 'N/A')
protein_name = data.get('gene', [{'geneName': {'value': 'N/A'}}])[0]['geneName']['value']
gene_name = data.get('organism', {}).get('scientificName', 'N/A')
organism
= next((comment for comment in data.get('comments', []) if comment['commentType'] == "FUNCTION"), None)
function_comment = function_comment['texts'][0]['value'] if function_comment else 'N/A'
function
# Printing the data
print(f"UniProt ID: {primary_accession}")
print(f"Protein Name: {protein_name}")
print(f"Organism: {organism}")
print(f"Function: {function}")
# Replace this with the UniProt ID you want to fetch
= "P20916"
uniprot_id = fetch_uniprot_data(uniprot_id)
data display_uniprot_data(data)
UniProt ID: P20916
Protein Name: Myelin-associated glycoprotein
Organism: Homo sapiens
Function: Adhesion molecule that mediates interactions between myelinating cells and neurons by binding to neuronal sialic acid-containing gangliosides and to the glycoproteins RTN4R and RTN4RL2 (By similarity). Not required for initial myelination, but seems to play a role in the maintenance of normal axon myelination. Protects motoneurons against apoptosis, also after injury; protection against apoptosis is probably mediated via interaction with neuronal RTN4R and RTN4RL2. Required to prevent degeneration of myelinated axons in adults; this probably depends on binding to gangliosides on the axon cell membrane (By similarity). Negative regulator of neurite outgrowth; in dorsal root ganglion neurons the inhibition is mediated primarily via binding to neuronal RTN4R or RTN4RL2 and to a lesser degree via binding to neuronal gangliosides. In cerebellar granule cells the inhibition is mediated primarily via binding to neuronal gangliosides. In sensory neurons, inhibition of neurite extension depends only partially on RTN4R, RTN4RL2 and gangliosides. Inhibits axon longitudinal growth (By similarity). Inhibits axon outgrowth by binding to RTN4R (By similarity). Preferentially binds to alpha-2,3-linked sialic acid. Binds ganglioside Gt1b (By similarity)