SURFACE-Bind
  • Home
  • Analysis
  • Protein Families
    • Enzymes
    • Receptors
    • Transporters
    • Miscellaneous
    • Unclassified
    • Unmatched
  • About
  1. StructuralAndAdhesion
  2. Q96LC7

  • StructuralAndAdhesion
    • A6H8M9
    • A6NMB1
    • B0FP48
    • O00533
    • O14493
    • O14917
    • O15389
    • O15394
    • O15551
    • O43556
    • O43699
    • O60245
    • O60330
    • O60469
    • O60487
    • O75309
    • O75508
    • O75631
    • O75712
    • O75871
    • O94856
    • O94985
    • O95206
    • O95297
    • O95377
    • O95452
    • O95471
    • O95484
    • O95832
    • P06731
    • P08034
    • P12830
    • P13591
    • P13688
    • P17302
    • P19022
    • P20138
    • P20273
    • P20916
    • P22223
    • P25189
    • P29033
    • P31997
    • P32004
    • P32926
    • P33151
    • P35212
    • P40198
    • P40199
    • P50895
    • P54851
    • P55283
    • P55285
    • P55286
    • P55287
    • P55289
    • P55290
    • P55291
    • P56746
    • P56747
    • P56748
    • P56749
    • P56856
    • P56880
    • P57087
    • P78369
    • P82279
    • Q3KPI0
    • Q5IJ48
    • Q5T442
    • Q6PEY0
    • Q6UWV2
    • Q6UY09
    • Q6V0I7
    • Q6V1P9
    • Q6ZMC9
    • Q7Z5N4
    • Q7Z692
    • Q08ET2
    • Q8IXH8
    • Q8N3J6
    • Q8N6F1
    • Q8N6Y1
    • Q8N7P3
    • Q8N126
    • Q8NFK1
    • Q8TAB3
    • Q8TD84
    • Q8TDW7
    • Q9BQT9
    • Q9BT76
    • Q9BUF7
    • Q9BY67
    • Q9BYE9
    • Q9BZA7
    • Q9BZA8
    • Q9H4D0
    • Q9H6B4
    • Q9H159
    • Q9H251
    • Q9HBB8
    • Q9HBT6
    • Q9HC56
    • Q9HCL0
    • Q9NPG4
    • Q9NRJ7
    • Q9NTQ9
    • Q9NYQ8
    • Q9NYZ4
    • Q9P2E7
    • Q9P2J2
    • Q9UJ99
    • Q9UKL4
    • Q9ULB4
    • Q9ULB5
    • Q9UN66
    • Q9UN67
    • Q9UPX0
    • Q9Y5E1
    • Q9Y5E2
    • Q9Y5E3
    • Q9Y5E4
    • Q9Y5E5
    • Q9Y5E6
    • Q9Y5E7
    • Q9Y5E8
    • Q9Y5E9
    • Q9Y5F0
    • Q9Y5F1
    • Q9Y5F2
    • Q9Y5F3
    • Q9Y5G8
    • Q9Y5I7
    • Q9Y6H8
    • Q9Y6N8
    • Q9Y286
    • Q9Y336
    • Q58EX2
    • Q86SJ6
    • Q86UP0
    • Q86VR7
    • Q96JP9
    • Q96JQ0
    • Q96LC7
    • Q96LD1
    • Q96PQ1
    • Q96QU1
    • Q96RL6
    • Q02413
    • Q02487
    • Q08174
    • Q08554
    • Q12864
    • Q13634
    • Q14002
    • Q14126
    • Q14517
    • Q14574
    • Q16585
    • Q16586
    • Q92629
    • Q92823

  • Other
    • A1L157
    • A6NDA9
    • B6SEH8
    • B6SEH9
    • O00241
    • O00478
    • O00481
    • O14817
    • O42043
    • O43155
    • O43300
    • O43657
    • O60635
    • O60636
    • O60637
    • O75144
    • O75325
    • O75954
    • O94898
    • O94933
    • O94991
    • O95857
    • O95858
    • P0C6S8
    • P0C7U0
    • P0DKB5
    • P07359
    • P08247
    • P08962
    • P11049
    • P13224
    • P19075
    • P19397
    • P21926
    • P23942
    • P27701
    • P40197
    • P41732
    • P42081
    • P48509
    • P60507
    • P60508
    • P60509
    • P61550
    • P61565
    • P61566
    • P61570
    • P62079
    • P78324
    • P78410
    • Q3SXY7
    • Q5JXA9
    • Q5R3F8
    • Q5TFQ8
    • Q5VT99
    • Q5ZPR3
    • Q6EMK4
    • Q6N022
    • Q6PJG9
    • Q6UXE8
    • Q6UXG8
    • Q6UXK2
    • Q6UXK5
    • Q6UXM1
    • Q6UY18
    • Q7KYR7
    • Q7L0X0
    • Q7L985
    • Q7Z7D3
    • Q8IW52
    • Q8N7C0
    • Q8N386
    • Q8N967
    • Q8NG11
    • Q8TBG9
    • Q8TF66
    • Q8WUT4
    • Q8WVV5
    • Q9BTN0
    • Q9H3W5
    • Q9H5Y7
    • Q9H9K5
    • Q9H156
    • Q9H756
    • Q9HBL6
    • Q9HBW1
    • Q9HCJ2
    • Q9N2J8
    • Q9N2K0
    • Q9NT68
    • Q9NT99
    • Q9NX77
    • Q9NZM1
    • Q9NZU0
    • Q9NZU1
    • Q9P1W8
    • Q9P2V4
    • Q9P244
    • Q9P273
    • Q9UKH3
    • Q9UKZ4
    • Q9ULH4
    • Q9UM44
    • Q9UQF0
    • Q9Y3B3
    • Q50LG9
    • Q86SJ2
    • Q86UF1
    • Q86VH4
    • Q86VH5
    • Q86WK6
    • Q86WK7
    • Q96FE5
    • Q96FV3
    • Q96JA1
    • Q96KV6
    • Q96NI6
    • Q96PB8
    • Q96PL5
    • Q96PX8
    • Q96S97
    • Q96SJ8
    • Q902F8
    • Q902F9
    • Q12999
    • Q13410
    • Q13641
    • Q14392
    • Q16563
    • Q69384

  • UnkownFunction
    • A0ZSE6
    • A1A5B4
    • A6NM11
    • A6NMS7
    • O14894
    • O15321
    • O60309
    • O94886
    • P11836
    • P30408
    • P48230
    • Q4KMQ2
    • Q5M7Z0
    • Q5T3F8
    • Q5XXA6
    • Q6IEE7
    • Q6IWH7
    • Q6UWL6
    • Q6UX27
    • Q7Z6M3
    • Q7Z7J7
    • Q7Z408
    • Q8IZU9
    • Q8N3T6
    • Q8N5U1
    • Q9BYT9
    • Q9H2W1
    • Q9HD45
    • Q9NQ90
    • Q9NQX7
    • Q9NV96
    • Q9P1W3
    • Q9Y287
    • Q9Y624
    • Q14C87
    • Q14DG7
    • Q24JP5
    • Q75V66
    • Q86WI0
    • Q86XK7
    • Q96CE8
    • Q96IQ7
    • Q96J84
    • Q96PZ7
    • Q96QE4
    • Q495A1
    • Q92544
    • Q99805

  • Ligand
    • O00548
    • O95727
    • O95754
    • P01893
    • P01903
    • P01906
    • P01909
    • P01920
    • P04440
    • P06340
    • P13747
    • P13762
    • P13765
    • P17693
    • P20036
    • P28067
    • P28068
    • P30511
    • P41217
    • P52799
    • P78504
    • P79483
    • P80370
    • P98172
    • Q6UY11
    • Q8N0W4
    • Q8N2Q7
    • Q8NFY4
    • Q8NFZ3
    • Q8NFZ4
    • Q9C0C4
    • Q9H2E6
    • Q9H3S1
    • Q9H3T2
    • Q9H3T3
    • Q9NPR2
    • Q9NR61
    • Q9NTN9
    • Q9NYJ7
    • Q9NZ94
    • Q9P283
    • Q9Y219
    • Q13591
    • Q15768
    • Q29980
    • Q29983
    • Q30154
    • Q92854

  • Miscellaneous

On this page

  • General information
  • AlphaFold model
  • Surface representation - binding sites
  • All detected seeds aligned
  • Seed scores per sites
  • Binding site metrics
  • Binding site sequence composition
  • Download
  1. StructuralAndAdhesion
  2. Q96LC7

Q96LC7

Author

Hamed Khakzad

Published

August 10, 2024

General information

Code
import requests
import urllib3
urllib3.disable_warnings()

def fetch_uniprot_data(uniprot_id):
    url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.json"
    response = requests.get(url, verify=False)  # Disable SSL verification
    response.raise_for_status()  # Raise an error for bad status codes
    return response.json()

def display_uniprot_data(data):
    primary_accession = data.get('primaryAccession', 'N/A')
    protein_name = data.get('proteinDescription', {}).get('recommendedName', {}).get('fullName', {}).get('value', 'N/A')
    gene_name = data.get('gene', [{'geneName': {'value': 'N/A'}}])[0]['geneName']['value']
    organism = data.get('organism', {}).get('scientificName', 'N/A')
    
    function_comment = next((comment for comment in data.get('comments', []) if comment['commentType'] == "FUNCTION"), None)
    function = function_comment['texts'][0]['value'] if function_comment else 'N/A'

    # Printing the data
    print(f"UniProt ID: {primary_accession}")
    print(f"Protein Name: {protein_name}")
    print(f"Organism: {organism}")
    print(f"Function: {function}")

# Replace this with the UniProt ID you want to fetch
uniprot_id = "Q96LC7"
data = fetch_uniprot_data(uniprot_id)
display_uniprot_data(data)
UniProt ID: Q96LC7
Protein Name: Sialic acid-binding Ig-like lectin 10
Organism: Homo sapiens
Function: Putative adhesion molecule that mediates sialic-acid dependent binding to cells. Preferentially binds to alpha-2,3- or alpha-2,6-linked sialic acid (By similarity). The sialic acid recognition site may be masked by cis interactions with sialic acids on the same cell surface. In the immune response, seems to act as an inhibitory receptor upon ligand induced tyrosine phosphorylation by recruiting cytoplasmic phosphatase(s) via their SH2 domain(s) that block signal transduction through dephosphorylation of signaling molecules (PubMed:11284738, PubMed:12163025). Involved in negative regulation of B-cell antigen receptor signaling. The inhibition of B cell activation is dependent on PTPN6/SHP-1 (By similarity). In association with CD24 may be involved in the selective suppression of the immune response to danger-associated molecular patterns (DAMPs) such as HMGB1, HSP70 and HSP90 (By similarity). In association with CD24 may regulate the immune repsonse of natural killer (NK) cells (PubMed:25450598). Plays a role in the control of autoimmunity (By similarity). During initiation of adaptive immune responses by CD8-alpha(+) dendritic cells inhibits cross-presentation by impairing the formation of MHC class I-peptide complexes. The function seems to implicate recruitment of PTPN6/SHP-1, which dephosphorylates NCF1 of the NADPH oxidase complex consequently promoting phagosomal acidification (By similarity)

More information:   

AlphaFold model

Surface representation - binding sites

The computed point cloud for pLDDT > 0.6. Each atom is sampled on average by 10 points.

To see the predicted binding interfaces, you can choose color theme “uncertainty”.

  • Go to the “Controls Panel”

  • Below “Components”, to the right, click on “…”

  • “Set Coloring” by “Atom Property”, and “Uncertainty/Disorder”

All detected seeds aligned

Seed scores per sites

Code
import re
import pandas as pd
import os
import plotly.express as px

ID = "Q96LC7"
data_list = []

name_pattern = re.compile(r'name: (\S+)')
score_pattern = re.compile(r'score: (\d+\.\d+)')
desc_dist_score_pattern = re.compile(r'desc_dist_score: (\d+\.\d+)')

directory = f"/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/Surfaceome_top100_per_site/{ID}_A"

for filename in os.listdir(directory):
    if filename.startswith("output_sorted_") and filename.endswith(".score"):
        filepath = os.path.join(directory, filename)
        with open(filepath, 'r') as file:
            for line in file:
                name_match = name_pattern.search(line)
                score_match = score_pattern.search(line)
                desc_dist_score_match = desc_dist_score_pattern.search(line)
                
                if name_match and score_match and desc_dist_score_match:
                    name = name_match.group(1)
                    score = float(score_match.group(1))
                    desc_dist_score = float(desc_dist_score_match.group(1))
                    
                    simple_filename = filename.replace("output_sorted_", "").replace(".score", "")
                    data_list.append({
                        'name': name[:-1],
                        'score': score,
                        'desc_dist_score': desc_dist_score,
                        'file': simple_filename
                    })

data = pd.DataFrame(data_list)

fig = px.scatter(
    data,
    x='score',
    y='desc_dist_score',
    color='file',
    title='Score vs Desc Dist Score',
    labels={'score': 'Score', 'desc_dist_score': 'Desc Dist Score'},
    hover_data={'name': True}
)

fig.update_layout(
    legend_title_text='File',
    legend=dict(
        yanchor="top",
        y=0.99,
        xanchor="left",
        x=1.05
    )
)

fig.show()

Binding site metrics

Code
import pandas as pd
pd.options.mode.chained_assignment = None
import plotly.express as px

df_total = pd.read_csv('/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/database/df_flattened.csv')
df_plot = df_total[df_total['acc_flat'] == ID]
df_plot ['Total seeds'] = df_plot.loc[:,['seedss_a','seedss_b']].sum(axis=1)
df_plot.loc[:, ["acc_flat", "main_classs", "sub_classs", "seedss_a", "seedss_b", "areass", "bsss", "hpss"]]
acc_flat main_classs sub_classs seedss_a seedss_b areass bsss hpss
4854 Q96LC7 Miscellaneous StructuralAndAdhesion 122 795 1274.016080 519 28.20000
4855 Q96LC7 Miscellaneous StructuralAndAdhesion 6 25 1307.846961 380 0.89999
4856 Q96LC7 Miscellaneous StructuralAndAdhesion 13 415 1635.910489 149 6.50000
Code
import math
import matplotlib.pyplot as plt

features = ['seedss_a', 'seedss_b', 'areass', 'hpss']
titles = ['Alpha seeds', 'Beta seeds', 'Area', 'Hydrophobicity']
num_features = len(features)

if len(df_plot) > 8:
    num_rows = 2
    num_cols = 2
else:
    num_rows = 1
    num_cols = 4

fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(9, num_rows * 5))

axes = axes.flatten()
positions = range(1, len(df_plot) + 1)

for i, feature in enumerate(features):
    title = titles[i]
    axes[i].bar(positions, df_plot[feature], color=['blue', 'orange', 'green', 'red', 'purple', 'brown'])
    axes[i].set_title(title, fontsize=13)
    axes[i].set_xticks(positions)
    axes[i].set_xticklabels(df_plot['bsss'], rotation=90)
    axes[i].set_xlabel("Center residues", fontsize=13)
    axes[i].set_ylabel(title, fontsize=13)

for j in range(len(features), len(axes)):
    fig.delaxes(axes[j])

plt.tight_layout()
plt.show()

Binding site sequence composition

Code
amino_acid_map = {
    'ALA': 'A', 'ARG': 'R', 'ASN': 'N', 'ASP': 'D', 'CYS': 'C',
    'GLN': 'Q', 'GLU': 'E', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I',
    'LEU': 'L', 'LYS': 'K', 'MET': 'M', 'PHE': 'F', 'PRO': 'P',
    'SER': 'S', 'THR': 'T', 'TRP': 'W', 'TYR': 'Y', 'VAL': 'V'
}

from collections import Counter
from ast import literal_eval
from matplotlib.gridspec import GridSpec
import warnings
warnings.filterwarnings("ignore", message="Attempting to set identical low and high xlims")

def convert_to_single_letter(aa_list):
    if type(aa_list) == str:
        aa_list = literal_eval(aa_list)
    return [amino_acid_map[aa] for aa in aa_list]

def create_sequence_visualizations(df, max_letters_per_row=20):
    for idx, row in df.iterrows():
        bsss = row['bsss']
        AAss = row['AAss']
        single_letter_sequence = convert_to_single_letter(AAss)
        
        freq_counter = Counter(single_letter_sequence)
        total_aa = len(single_letter_sequence)
        frequencies = {aa: freq / total_aa for aa, freq in freq_counter.items()}
        
        cmap = plt.get_cmap('viridis')
        norm = plt.Normalize(0, max(frequencies.values()) if frequencies else 1)
        
        n_rows = (len(single_letter_sequence) + max_letters_per_row - 1) // max_letters_per_row
        fig = plt.figure(figsize=(max_letters_per_row * 0.6, n_rows * 1.2 + 0.5))
        
        gs = GridSpec(n_rows + 1, 1, height_ratios=[1] * n_rows + [0.1], hspace=0.3)
        
        for row_idx in range(n_rows):
            start_idx = row_idx * max_letters_per_row
            end_idx = min((row_idx + 1) * max_letters_per_row, len(single_letter_sequence))
            ax = fig.add_subplot(gs[row_idx, 0])
            ax.set_xlim(0, max_letters_per_row)
            ax.set_ylim(0, 1)
            ax.axis('off')
            
            for i, aa in enumerate(single_letter_sequence[start_idx:end_idx]):
                freq = frequencies[aa]
                color = cmap(norm(freq))
                ax.text(i + 0.5, 0.5, aa, ha='center', va='center', fontsize=24, color=color, fontweight='bold')
        
        cbar_ax = fig.add_subplot(gs[-1, 0])
        sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
        sm.set_array([])
        cbar = plt.colorbar(sm, cax=cbar_ax, orientation='horizontal')
        cbar.set_label('Frequency', fontsize=12)
        cbar.ax.tick_params(labelsize=12)
        
        plt.suptitle(f"Center residue {bsss}", fontsize=14)
        plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
        plt.show()
            
create_sequence_visualizations(df_plot)

Download

To download all the seeds and score files for this entry Click Here!

Q96JQ0
Q96LD1