SURFACE-Bind
  • Home
  • Analysis
  • Protein Families
    • Enzymes
    • Receptors
    • Transporters
    • Miscellaneous
    • Unclassified
    • Unmatched
  • About
  1. StructuralAndAdhesion
  2. Q9BY67

  • StructuralAndAdhesion
    • A6H8M9
    • A6NMB1
    • B0FP48
    • O00533
    • O14493
    • O14917
    • O15389
    • O15394
    • O15551
    • O43556
    • O43699
    • O60245
    • O60330
    • O60469
    • O60487
    • O75309
    • O75508
    • O75631
    • O75712
    • O75871
    • O94856
    • O94985
    • O95206
    • O95297
    • O95377
    • O95452
    • O95471
    • O95484
    • O95832
    • P06731
    • P08034
    • P12830
    • P13591
    • P13688
    • P17302
    • P19022
    • P20138
    • P20273
    • P20916
    • P22223
    • P25189
    • P29033
    • P31997
    • P32004
    • P32926
    • P33151
    • P35212
    • P40198
    • P40199
    • P50895
    • P54851
    • P55283
    • P55285
    • P55286
    • P55287
    • P55289
    • P55290
    • P55291
    • P56746
    • P56747
    • P56748
    • P56749
    • P56856
    • P56880
    • P57087
    • P78369
    • P82279
    • Q3KPI0
    • Q5IJ48
    • Q5T442
    • Q6PEY0
    • Q6UWV2
    • Q6UY09
    • Q6V0I7
    • Q6V1P9
    • Q6ZMC9
    • Q7Z5N4
    • Q7Z692
    • Q08ET2
    • Q8IXH8
    • Q8N3J6
    • Q8N6F1
    • Q8N6Y1
    • Q8N7P3
    • Q8N126
    • Q8NFK1
    • Q8TAB3
    • Q8TD84
    • Q8TDW7
    • Q9BQT9
    • Q9BT76
    • Q9BUF7
    • Q9BY67
    • Q9BYE9
    • Q9BZA7
    • Q9BZA8
    • Q9H4D0
    • Q9H6B4
    • Q9H159
    • Q9H251
    • Q9HBB8
    • Q9HBT6
    • Q9HC56
    • Q9HCL0
    • Q9NPG4
    • Q9NRJ7
    • Q9NTQ9
    • Q9NYQ8
    • Q9NYZ4
    • Q9P2E7
    • Q9P2J2
    • Q9UJ99
    • Q9UKL4
    • Q9ULB4
    • Q9ULB5
    • Q9UN66
    • Q9UN67
    • Q9UPX0
    • Q9Y5E1
    • Q9Y5E2
    • Q9Y5E3
    • Q9Y5E4
    • Q9Y5E5
    • Q9Y5E6
    • Q9Y5E7
    • Q9Y5E8
    • Q9Y5E9
    • Q9Y5F0
    • Q9Y5F1
    • Q9Y5F2
    • Q9Y5F3
    • Q9Y5G8
    • Q9Y5I7
    • Q9Y6H8
    • Q9Y6N8
    • Q9Y286
    • Q9Y336
    • Q58EX2
    • Q86SJ6
    • Q86UP0
    • Q86VR7
    • Q96JP9
    • Q96JQ0
    • Q96LC7
    • Q96LD1
    • Q96PQ1
    • Q96QU1
    • Q96RL6
    • Q02413
    • Q02487
    • Q08174
    • Q08554
    • Q12864
    • Q13634
    • Q14002
    • Q14126
    • Q14517
    • Q14574
    • Q16585
    • Q16586
    • Q92629
    • Q92823

  • Other
    • A1L157
    • A6NDA9
    • B6SEH8
    • B6SEH9
    • O00241
    • O00478
    • O00481
    • O14817
    • O42043
    • O43155
    • O43300
    • O43657
    • O60635
    • O60636
    • O60637
    • O75144
    • O75325
    • O75954
    • O94898
    • O94933
    • O94991
    • O95857
    • O95858
    • P0C6S8
    • P0C7U0
    • P0DKB5
    • P07359
    • P08247
    • P08962
    • P11049
    • P13224
    • P19075
    • P19397
    • P21926
    • P23942
    • P27701
    • P40197
    • P41732
    • P42081
    • P48509
    • P60507
    • P60508
    • P60509
    • P61550
    • P61565
    • P61566
    • P61570
    • P62079
    • P78324
    • P78410
    • Q3SXY7
    • Q5JXA9
    • Q5R3F8
    • Q5TFQ8
    • Q5VT99
    • Q5ZPR3
    • Q6EMK4
    • Q6N022
    • Q6PJG9
    • Q6UXE8
    • Q6UXG8
    • Q6UXK2
    • Q6UXK5
    • Q6UXM1
    • Q6UY18
    • Q7KYR7
    • Q7L0X0
    • Q7L985
    • Q7Z7D3
    • Q8IW52
    • Q8N7C0
    • Q8N386
    • Q8N967
    • Q8NG11
    • Q8TBG9
    • Q8TF66
    • Q8WUT4
    • Q8WVV5
    • Q9BTN0
    • Q9H3W5
    • Q9H5Y7
    • Q9H9K5
    • Q9H156
    • Q9H756
    • Q9HBL6
    • Q9HBW1
    • Q9HCJ2
    • Q9N2J8
    • Q9N2K0
    • Q9NT68
    • Q9NT99
    • Q9NX77
    • Q9NZM1
    • Q9NZU0
    • Q9NZU1
    • Q9P1W8
    • Q9P2V4
    • Q9P244
    • Q9P273
    • Q9UKH3
    • Q9UKZ4
    • Q9ULH4
    • Q9UM44
    • Q9UQF0
    • Q9Y3B3
    • Q50LG9
    • Q86SJ2
    • Q86UF1
    • Q86VH4
    • Q86VH5
    • Q86WK6
    • Q86WK7
    • Q96FE5
    • Q96FV3
    • Q96JA1
    • Q96KV6
    • Q96NI6
    • Q96PB8
    • Q96PL5
    • Q96PX8
    • Q96S97
    • Q96SJ8
    • Q902F8
    • Q902F9
    • Q12999
    • Q13410
    • Q13641
    • Q14392
    • Q16563
    • Q69384

  • UnkownFunction
    • A0ZSE6
    • A1A5B4
    • A6NM11
    • A6NMS7
    • O14894
    • O15321
    • O60309
    • O94886
    • P11836
    • P30408
    • P48230
    • Q4KMQ2
    • Q5M7Z0
    • Q5T3F8
    • Q5XXA6
    • Q6IEE7
    • Q6IWH7
    • Q6UWL6
    • Q6UX27
    • Q7Z6M3
    • Q7Z7J7
    • Q7Z408
    • Q8IZU9
    • Q8N3T6
    • Q8N5U1
    • Q9BYT9
    • Q9H2W1
    • Q9HD45
    • Q9NQ90
    • Q9NQX7
    • Q9NV96
    • Q9P1W3
    • Q9Y287
    • Q9Y624
    • Q14C87
    • Q14DG7
    • Q24JP5
    • Q75V66
    • Q86WI0
    • Q86XK7
    • Q96CE8
    • Q96IQ7
    • Q96J84
    • Q96PZ7
    • Q96QE4
    • Q495A1
    • Q92544
    • Q99805

  • Ligand
    • O00548
    • O95727
    • O95754
    • P01893
    • P01903
    • P01906
    • P01909
    • P01920
    • P04440
    • P06340
    • P13747
    • P13762
    • P13765
    • P17693
    • P20036
    • P28067
    • P28068
    • P30511
    • P41217
    • P52799
    • P78504
    • P79483
    • P80370
    • P98172
    • Q6UY11
    • Q8N0W4
    • Q8N2Q7
    • Q8NFY4
    • Q8NFZ3
    • Q8NFZ4
    • Q9C0C4
    • Q9H2E6
    • Q9H3S1
    • Q9H3T2
    • Q9H3T3
    • Q9NPR2
    • Q9NR61
    • Q9NTN9
    • Q9NYJ7
    • Q9NZ94
    • Q9P283
    • Q9Y219
    • Q13591
    • Q15768
    • Q29980
    • Q29983
    • Q30154
    • Q92854

  • Miscellaneous

On this page

  • General information
  • AlphaFold model
  • Surface representation - binding sites
  • All detected seeds aligned
  • Seed scores per sites
  • Binding site metrics
  • Binding site sequence composition
  • Download
  1. StructuralAndAdhesion
  2. Q9BY67

Q9BY67

Author

Hamed Khakzad

Published

August 10, 2024

General information

Code
import requests
import urllib3
urllib3.disable_warnings()

def fetch_uniprot_data(uniprot_id):
    url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.json"
    response = requests.get(url, verify=False)  # Disable SSL verification
    response.raise_for_status()  # Raise an error for bad status codes
    return response.json()

def display_uniprot_data(data):
    primary_accession = data.get('primaryAccession', 'N/A')
    protein_name = data.get('proteinDescription', {}).get('recommendedName', {}).get('fullName', {}).get('value', 'N/A')
    gene_name = data.get('gene', [{'geneName': {'value': 'N/A'}}])[0]['geneName']['value']
    organism = data.get('organism', {}).get('scientificName', 'N/A')
    
    function_comment = next((comment for comment in data.get('comments', []) if comment['commentType'] == "FUNCTION"), None)
    function = function_comment['texts'][0]['value'] if function_comment else 'N/A'

    # Printing the data
    print(f"UniProt ID: {primary_accession}")
    print(f"Protein Name: {protein_name}")
    print(f"Organism: {organism}")
    print(f"Function: {function}")

# Replace this with the UniProt ID you want to fetch
uniprot_id = "Q9BY67"
data = fetch_uniprot_data(uniprot_id)
display_uniprot_data(data)
UniProt ID: Q9BY67
Protein Name: Cell adhesion molecule 1
Organism: Homo sapiens
Function: Mediates homophilic cell-cell adhesion in a Ca(2+)-independent manner (PubMed:12050160, PubMed:22438059). Also mediates heterophilic cell-cell adhesion with CADM3 and NECTIN3 in a Ca(2+)-independent manner (By similarity). Interaction with CRTAM promotes natural killer (NK) cell cytotoxicity and interferon-gamma (IFN-gamma) secretion by CD8+ cells in vitro as well as NK cell-mediated rejection of tumors expressing CADM1 in vivo (PubMed:15811952). In mast cells, may mediate attachment to and promote communication with nerves (PubMed:15905536). CADM1, together with MITF, is essential for development and survival of mast cells in vivo (PubMed:22438059). By interacting with CRTAM and thus promoting the adhesion between CD8+ T-cells and CD8+ dendritic cells, regulates the retention of activated CD8+ T-cell within the draining lymph node (By similarity). Required for the intestinal retention of intraepithelial CD4+ CD8+ T-cells and, to a lesser extent, intraepithelial and lamina propria CD8+ T-cells and CD4+ T-cells (By similarity). Interaction with CRTAM promotes the adhesion to gut-associated CD103+ dendritic cells, which may facilitate the expression of gut-homing and adhesion molecules on T-cells and the conversion of CD4+ T-cells into CD4+ CD8+ T-cells (By similarity). Acts as a synaptic cell adhesion molecule and plays a role in the formation of dendritic spines and in synapse assembly (By similarity). May be involved in neuronal migration, axon growth, pathfinding, and fasciculation on the axons of differentiating neurons (By similarity). May play diverse roles in the spermatogenesis including in the adhesion of spermatocytes and spermatids to Sertoli cells and for their normal differentiation into mature spermatozoa (By similarity). Acts as a tumor suppressor in non-small-cell lung cancer (NSCLC) cells (PubMed:11279526, PubMed:12234973). May contribute to the less invasive phenotypes of lepidic growth tumor cells (PubMed:12920246)

More information:   

AlphaFold model

Surface representation - binding sites

The computed point cloud for pLDDT > 0.6. Each atom is sampled on average by 10 points.

To see the predicted binding interfaces, you can choose color theme “uncertainty”.

  • Go to the “Controls Panel”

  • Below “Components”, to the right, click on “…”

  • “Set Coloring” by “Atom Property”, and “Uncertainty/Disorder”

All detected seeds aligned

Seed scores per sites

Code
import re
import pandas as pd
import os
import plotly.express as px

ID = "Q9BY67"
data_list = []

name_pattern = re.compile(r'name: (\S+)')
score_pattern = re.compile(r'score: (\d+\.\d+)')
desc_dist_score_pattern = re.compile(r'desc_dist_score: (\d+\.\d+)')

directory = f"/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/Surfaceome_top100_per_site/{ID}_A"

for filename in os.listdir(directory):
    if filename.startswith("output_sorted_") and filename.endswith(".score"):
        filepath = os.path.join(directory, filename)
        with open(filepath, 'r') as file:
            for line in file:
                name_match = name_pattern.search(line)
                score_match = score_pattern.search(line)
                desc_dist_score_match = desc_dist_score_pattern.search(line)
                
                if name_match and score_match and desc_dist_score_match:
                    name = name_match.group(1)
                    score = float(score_match.group(1))
                    desc_dist_score = float(desc_dist_score_match.group(1))
                    
                    simple_filename = filename.replace("output_sorted_", "").replace(".score", "")
                    data_list.append({
                        'name': name[:-1],
                        'score': score,
                        'desc_dist_score': desc_dist_score,
                        'file': simple_filename
                    })

data = pd.DataFrame(data_list)

fig = px.scatter(
    data,
    x='score',
    y='desc_dist_score',
    color='file',
    title='Score vs Desc Dist Score',
    labels={'score': 'Score', 'desc_dist_score': 'Desc Dist Score'},
    hover_data={'name': True}
)

fig.update_layout(
    legend_title_text='File',
    legend=dict(
        yanchor="top",
        y=0.99,
        xanchor="left",
        x=1.05
    )
)

fig.show()

Binding site metrics

Code
import pandas as pd
pd.options.mode.chained_assignment = None
import plotly.express as px

df_total = pd.read_csv('/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/database/df_flattened.csv')
df_plot = df_total[df_total['acc_flat'] == ID]
df_plot ['Total seeds'] = df_plot.loc[:,['seedss_a','seedss_b']].sum(axis=1)
df_plot.loc[:, ["acc_flat", "main_classs", "sub_classs", "seedss_a", "seedss_b", "areass", "bsss", "hpss"]]
acc_flat main_classs sub_classs seedss_a seedss_b areass bsss hpss
581 Q9BY67 Miscellaneous StructuralAndAdhesion 624 1959 911.697945 257 3.9000
582 Q9BY67 Miscellaneous StructuralAndAdhesion 72 52 2159.202086 144 -3.3999
583 Q9BY67 Miscellaneous StructuralAndAdhesion 185 1467 693.156931 86 -5.0000
Code
import math
import matplotlib.pyplot as plt

features = ['seedss_a', 'seedss_b', 'areass', 'hpss']
titles = ['Alpha seeds', 'Beta seeds', 'Area', 'Hydrophobicity']
num_features = len(features)

if len(df_plot) > 8:
    num_rows = 2
    num_cols = 2
else:
    num_rows = 1
    num_cols = 4

fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(9, num_rows * 5))

axes = axes.flatten()
positions = range(1, len(df_plot) + 1)

for i, feature in enumerate(features):
    title = titles[i]
    axes[i].bar(positions, df_plot[feature], color=['blue', 'orange', 'green', 'red', 'purple', 'brown'])
    axes[i].set_title(title, fontsize=13)
    axes[i].set_xticks(positions)
    axes[i].set_xticklabels(df_plot['bsss'], rotation=90)
    axes[i].set_xlabel("Center residues", fontsize=13)
    axes[i].set_ylabel(title, fontsize=13)

for j in range(len(features), len(axes)):
    fig.delaxes(axes[j])

plt.tight_layout()
plt.show()

Binding site sequence composition

Code
amino_acid_map = {
    'ALA': 'A', 'ARG': 'R', 'ASN': 'N', 'ASP': 'D', 'CYS': 'C',
    'GLN': 'Q', 'GLU': 'E', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I',
    'LEU': 'L', 'LYS': 'K', 'MET': 'M', 'PHE': 'F', 'PRO': 'P',
    'SER': 'S', 'THR': 'T', 'TRP': 'W', 'TYR': 'Y', 'VAL': 'V'
}

from collections import Counter
from ast import literal_eval
from matplotlib.gridspec import GridSpec
import warnings
warnings.filterwarnings("ignore", message="Attempting to set identical low and high xlims")

def convert_to_single_letter(aa_list):
    if type(aa_list) == str:
        aa_list = literal_eval(aa_list)
    return [amino_acid_map[aa] for aa in aa_list]

def create_sequence_visualizations(df, max_letters_per_row=20):
    for idx, row in df.iterrows():
        bsss = row['bsss']
        AAss = row['AAss']
        single_letter_sequence = convert_to_single_letter(AAss)
        
        freq_counter = Counter(single_letter_sequence)
        total_aa = len(single_letter_sequence)
        frequencies = {aa: freq / total_aa for aa, freq in freq_counter.items()}
        
        cmap = plt.get_cmap('viridis')
        norm = plt.Normalize(0, max(frequencies.values()) if frequencies else 1)
        
        n_rows = (len(single_letter_sequence) + max_letters_per_row - 1) // max_letters_per_row
        fig = plt.figure(figsize=(max_letters_per_row * 0.6, n_rows * 1.2 + 0.5))
        
        gs = GridSpec(n_rows + 1, 1, height_ratios=[1] * n_rows + [0.1], hspace=0.3)
        
        for row_idx in range(n_rows):
            start_idx = row_idx * max_letters_per_row
            end_idx = min((row_idx + 1) * max_letters_per_row, len(single_letter_sequence))
            ax = fig.add_subplot(gs[row_idx, 0])
            ax.set_xlim(0, max_letters_per_row)
            ax.set_ylim(0, 1)
            ax.axis('off')
            
            for i, aa in enumerate(single_letter_sequence[start_idx:end_idx]):
                freq = frequencies[aa]
                color = cmap(norm(freq))
                ax.text(i + 0.5, 0.5, aa, ha='center', va='center', fontsize=24, color=color, fontweight='bold')
        
        cbar_ax = fig.add_subplot(gs[-1, 0])
        sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
        sm.set_array([])
        cbar = plt.colorbar(sm, cax=cbar_ax, orientation='horizontal')
        cbar.set_label('Frequency', fontsize=12)
        cbar.ax.tick_params(labelsize=12)
        
        plt.suptitle(f"Center residue {bsss}", fontsize=14)
        plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
        plt.show()
            
create_sequence_visualizations(df_plot)

Download

To download all the seeds and score files for this entry Click Here!

Q9BUF7
Q9BYE9