SURFACE-Bind
  • Home
  • Analysis
  • Protein Families
    • Enzymes
    • Receptors
    • Transporters
    • Miscellaneous
    • Unclassified
    • Unmatched
  • About
  1. Other
  2. P27701

  • StructuralAndAdhesion
    • A6H8M9
    • A6NMB1
    • B0FP48
    • O00533
    • O14493
    • O14917
    • O15389
    • O15394
    • O15551
    • O43556
    • O43699
    • O60245
    • O60330
    • O60469
    • O60487
    • O75309
    • O75508
    • O75631
    • O75712
    • O75871
    • O94856
    • O94985
    • O95206
    • O95297
    • O95377
    • O95452
    • O95471
    • O95484
    • O95832
    • P06731
    • P08034
    • P12830
    • P13591
    • P13688
    • P17302
    • P19022
    • P20138
    • P20273
    • P20916
    • P22223
    • P25189
    • P29033
    • P31997
    • P32004
    • P32926
    • P33151
    • P35212
    • P40198
    • P40199
    • P50895
    • P54851
    • P55283
    • P55285
    • P55286
    • P55287
    • P55289
    • P55290
    • P55291
    • P56746
    • P56747
    • P56748
    • P56749
    • P56856
    • P56880
    • P57087
    • P78369
    • P82279
    • Q3KPI0
    • Q5IJ48
    • Q5T442
    • Q6PEY0
    • Q6UWV2
    • Q6UY09
    • Q6V0I7
    • Q6V1P9
    • Q6ZMC9
    • Q7Z5N4
    • Q7Z692
    • Q08ET2
    • Q8IXH8
    • Q8N3J6
    • Q8N6F1
    • Q8N6Y1
    • Q8N7P3
    • Q8N126
    • Q8NFK1
    • Q8TAB3
    • Q8TD84
    • Q8TDW7
    • Q9BQT9
    • Q9BT76
    • Q9BUF7
    • Q9BY67
    • Q9BYE9
    • Q9BZA7
    • Q9BZA8
    • Q9H4D0
    • Q9H6B4
    • Q9H159
    • Q9H251
    • Q9HBB8
    • Q9HBT6
    • Q9HC56
    • Q9HCL0
    • Q9NPG4
    • Q9NRJ7
    • Q9NTQ9
    • Q9NYQ8
    • Q9NYZ4
    • Q9P2E7
    • Q9P2J2
    • Q9UJ99
    • Q9UKL4
    • Q9ULB4
    • Q9ULB5
    • Q9UN66
    • Q9UN67
    • Q9UPX0
    • Q9Y5E1
    • Q9Y5E2
    • Q9Y5E3
    • Q9Y5E4
    • Q9Y5E5
    • Q9Y5E6
    • Q9Y5E7
    • Q9Y5E8
    • Q9Y5E9
    • Q9Y5F0
    • Q9Y5F1
    • Q9Y5F2
    • Q9Y5F3
    • Q9Y5G8
    • Q9Y5I7
    • Q9Y6H8
    • Q9Y6N8
    • Q9Y286
    • Q9Y336
    • Q58EX2
    • Q86SJ6
    • Q86UP0
    • Q86VR7
    • Q96JP9
    • Q96JQ0
    • Q96LC7
    • Q96LD1
    • Q96PQ1
    • Q96QU1
    • Q96RL6
    • Q02413
    • Q02487
    • Q08174
    • Q08554
    • Q12864
    • Q13634
    • Q14002
    • Q14126
    • Q14517
    • Q14574
    • Q16585
    • Q16586
    • Q92629
    • Q92823

  • Other
    • A1L157
    • A6NDA9
    • B6SEH8
    • B6SEH9
    • O00241
    • O00478
    • O00481
    • O14817
    • O42043
    • O43155
    • O43300
    • O43657
    • O60635
    • O60636
    • O60637
    • O75144
    • O75325
    • O75954
    • O94898
    • O94933
    • O94991
    • O95857
    • O95858
    • P0C6S8
    • P0C7U0
    • P0DKB5
    • P07359
    • P08247
    • P08962
    • P11049
    • P13224
    • P19075
    • P19397
    • P21926
    • P23942
    • P27701
    • P40197
    • P41732
    • P42081
    • P48509
    • P60507
    • P60508
    • P60509
    • P61550
    • P61565
    • P61566
    • P61570
    • P62079
    • P78324
    • P78410
    • Q3SXY7
    • Q5JXA9
    • Q5R3F8
    • Q5TFQ8
    • Q5VT99
    • Q5ZPR3
    • Q6EMK4
    • Q6N022
    • Q6PJG9
    • Q6UXE8
    • Q6UXG8
    • Q6UXK2
    • Q6UXK5
    • Q6UXM1
    • Q6UY18
    • Q7KYR7
    • Q7L0X0
    • Q7L985
    • Q7Z7D3
    • Q8IW52
    • Q8N7C0
    • Q8N386
    • Q8N967
    • Q8NG11
    • Q8TBG9
    • Q8TF66
    • Q8WUT4
    • Q8WVV5
    • Q9BTN0
    • Q9H3W5
    • Q9H5Y7
    • Q9H9K5
    • Q9H156
    • Q9H756
    • Q9HBL6
    • Q9HBW1
    • Q9HCJ2
    • Q9N2J8
    • Q9N2K0
    • Q9NT68
    • Q9NT99
    • Q9NX77
    • Q9NZM1
    • Q9NZU0
    • Q9NZU1
    • Q9P1W8
    • Q9P2V4
    • Q9P244
    • Q9P273
    • Q9UKH3
    • Q9UKZ4
    • Q9ULH4
    • Q9UM44
    • Q9UQF0
    • Q9Y3B3
    • Q50LG9
    • Q86SJ2
    • Q86UF1
    • Q86VH4
    • Q86VH5
    • Q86WK6
    • Q86WK7
    • Q96FE5
    • Q96FV3
    • Q96JA1
    • Q96KV6
    • Q96NI6
    • Q96PB8
    • Q96PL5
    • Q96PX8
    • Q96S97
    • Q96SJ8
    • Q902F8
    • Q902F9
    • Q12999
    • Q13410
    • Q13641
    • Q14392
    • Q16563
    • Q69384

  • UnkownFunction
    • A0ZSE6
    • A1A5B4
    • A6NM11
    • A6NMS7
    • O14894
    • O15321
    • O60309
    • O94886
    • P11836
    • P30408
    • P48230
    • Q4KMQ2
    • Q5M7Z0
    • Q5T3F8
    • Q5XXA6
    • Q6IEE7
    • Q6IWH7
    • Q6UWL6
    • Q6UX27
    • Q7Z6M3
    • Q7Z7J7
    • Q7Z408
    • Q8IZU9
    • Q8N3T6
    • Q8N5U1
    • Q9BYT9
    • Q9H2W1
    • Q9HD45
    • Q9NQ90
    • Q9NQX7
    • Q9NV96
    • Q9P1W3
    • Q9Y287
    • Q9Y624
    • Q14C87
    • Q14DG7
    • Q24JP5
    • Q75V66
    • Q86WI0
    • Q86XK7
    • Q96CE8
    • Q96IQ7
    • Q96J84
    • Q96PZ7
    • Q96QE4
    • Q495A1
    • Q92544
    • Q99805

  • Ligand
    • O00548
    • O95727
    • O95754
    • P01893
    • P01903
    • P01906
    • P01909
    • P01920
    • P04440
    • P06340
    • P13747
    • P13762
    • P13765
    • P17693
    • P20036
    • P28067
    • P28068
    • P30511
    • P41217
    • P52799
    • P78504
    • P79483
    • P80370
    • P98172
    • Q6UY11
    • Q8N0W4
    • Q8N2Q7
    • Q8NFY4
    • Q8NFZ3
    • Q8NFZ4
    • Q9C0C4
    • Q9H2E6
    • Q9H3S1
    • Q9H3T2
    • Q9H3T3
    • Q9NPR2
    • Q9NR61
    • Q9NTN9
    • Q9NYJ7
    • Q9NZ94
    • Q9P283
    • Q9Y219
    • Q13591
    • Q15768
    • Q29980
    • Q29983
    • Q30154
    • Q92854

  • Miscellaneous

On this page

  • General information
  • AlphaFold model
  • Surface representation - binding sites
  • All detected seeds aligned
  • Seed scores per sites
  • Binding site metrics
  • Binding site sequence composition
  • Download
  1. Other
  2. P27701

P27701

Author

Hamed Khakzad

Published

August 10, 2024

General information

Code
import requests
import urllib3
urllib3.disable_warnings()

def fetch_uniprot_data(uniprot_id):
    url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.json"
    response = requests.get(url, verify=False)  # Disable SSL verification
    response.raise_for_status()  # Raise an error for bad status codes
    return response.json()

def display_uniprot_data(data):
    primary_accession = data.get('primaryAccession', 'N/A')
    protein_name = data.get('proteinDescription', {}).get('recommendedName', {}).get('fullName', {}).get('value', 'N/A')
    gene_name = data.get('gene', [{'geneName': {'value': 'N/A'}}])[0]['geneName']['value']
    organism = data.get('organism', {}).get('scientificName', 'N/A')
    
    function_comment = next((comment for comment in data.get('comments', []) if comment['commentType'] == "FUNCTION"), None)
    function = function_comment['texts'][0]['value'] if function_comment else 'N/A'

    # Printing the data
    print(f"UniProt ID: {primary_accession}")
    print(f"Protein Name: {protein_name}")
    print(f"Organism: {organism}")
    print(f"Function: {function}")

# Replace this with the UniProt ID you want to fetch
uniprot_id = "P27701"
data = fetch_uniprot_data(uniprot_id)
display_uniprot_data(data)
UniProt ID: P27701
Protein Name: CD82 antigen
Organism: Homo sapiens
Function: Structural component of specialized membrane microdomains known as tetraspanin-enriched microdomains (TERMs), which act as platforms for receptor clustering and signaling (PubMed:19497983). Participates thereby in diverse biological functions such as cell signal transduction, adhesion, migration and protein trafficking. Acts as a attenuator of EGF signaling, facilitating ligand-induced endocytosis of the receptor and its subsequent desensitization (PubMed:10985391, PubMed:35538033). Mechanistically, modulates ligand-induced ubiquitination and trafficking of EGFR via E3 ligase CBL phosphorylation by PKC (PubMed:23897813). Increases cell-matrix adhesion by regulating the membrane organization of integrin alpha4/ITA4 (PubMed:24623721, PubMed:8757325). Modulates adhesion and suppresses cell migration through other integrins such as the alpha6/ITGA6 and beta1/ITGB1 (PubMed:15557282, PubMed:17560548). Decreases cell-associated plasminogen activation by interfering with the interaction between urokinase-type plasminogen activator/PLAU and its receptor PLAUR (PubMed:15677461). Associates with CD4 or CD8 and delivers costimulatory signals for the TCR/CD3 pathway. Plays a role in TLR9 trafficking to acidified CpG-containing compartments by controlling interaction between TLR9 and VAMP3 and subsequent myddosome assembly (By similarity). Inhibits LPS-induced inflammatory response by preventing binding of LPS to TLR4 on the cell surface (PubMed:36945827). Plays a role in the activation of macrophages into anti-inflammatory phenotypes (By similarity). Independently of Toll-like receptor (TLR) signaling, is recruited to pathogen-containing phagosomes prior to fusion with lysosomes and thereby participates in antigen presentation (By similarity). Acts also to control angiogenesis and switch angiogenic milieu to quiescent state by binding and sequestering VEGFA and PDGFB to inhibit the signaling they trigger via their respective cell surface receptor (PubMed:34530889)

More information:   

AlphaFold model

Surface representation - binding sites

The computed point cloud for pLDDT > 0.6. Each atom is sampled on average by 10 points.

To see the predicted binding interfaces, you can choose color theme “uncertainty”.

  • Go to the “Controls Panel”

  • Below “Components”, to the right, click on “…”

  • “Set Coloring” by “Atom Property”, and “Uncertainty/Disorder”

All detected seeds aligned

Seed scores per sites

Code
import re
import pandas as pd
import os
import plotly.express as px

ID = "P27701"
data_list = []

name_pattern = re.compile(r'name: (\S+)')
score_pattern = re.compile(r'score: (\d+\.\d+)')
desc_dist_score_pattern = re.compile(r'desc_dist_score: (\d+\.\d+)')

directory = f"/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/Surfaceome_top100_per_site/{ID}_A"

for filename in os.listdir(directory):
    if filename.startswith("output_sorted_") and filename.endswith(".score"):
        filepath = os.path.join(directory, filename)
        with open(filepath, 'r') as file:
            for line in file:
                name_match = name_pattern.search(line)
                score_match = score_pattern.search(line)
                desc_dist_score_match = desc_dist_score_pattern.search(line)
                
                if name_match and score_match and desc_dist_score_match:
                    name = name_match.group(1)
                    score = float(score_match.group(1))
                    desc_dist_score = float(desc_dist_score_match.group(1))
                    
                    simple_filename = filename.replace("output_sorted_", "").replace(".score", "")
                    data_list.append({
                        'name': name[:-1],
                        'score': score,
                        'desc_dist_score': desc_dist_score,
                        'file': simple_filename
                    })

data = pd.DataFrame(data_list)

fig = px.scatter(
    data,
    x='score',
    y='desc_dist_score',
    color='file',
    title='Score vs Desc Dist Score',
    labels={'score': 'Score', 'desc_dist_score': 'Desc Dist Score'},
    hover_data={'name': True}
)

fig.update_layout(
    legend_title_text='File',
    legend=dict(
        yanchor="top",
        y=0.99,
        xanchor="left",
        x=1.05
    )
)

fig.show()

Binding site metrics

Code
import pandas as pd
pd.options.mode.chained_assignment = None
import plotly.express as px

df_total = pd.read_csv('/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/database/df_flattened.csv')
df_plot = df_total[df_total['acc_flat'] == ID]
df_plot ['Total seeds'] = df_plot.loc[:,['seedss_a','seedss_b']].sum(axis=1)
df_plot.loc[:, ["acc_flat", "main_classs", "sub_classs", "seedss_a", "seedss_b", "areass", "bsss", "hpss"]]
acc_flat main_classs sub_classs seedss_a seedss_b areass bsss hpss
719 P27701 Miscellaneous Other 128 25 1582.471998 143 29.3
Code
import math
import matplotlib.pyplot as plt

features = ['seedss_a', 'seedss_b', 'areass', 'hpss']
titles = ['Alpha seeds', 'Beta seeds', 'Area', 'Hydrophobicity']
num_features = len(features)

if len(df_plot) > 8:
    num_rows = 2
    num_cols = 2
else:
    num_rows = 1
    num_cols = 4

fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(9, num_rows * 5))

axes = axes.flatten()
positions = range(1, len(df_plot) + 1)

for i, feature in enumerate(features):
    title = titles[i]
    axes[i].bar(positions, df_plot[feature], color=['blue', 'orange', 'green', 'red', 'purple', 'brown'])
    axes[i].set_title(title, fontsize=13)
    axes[i].set_xticks(positions)
    axes[i].set_xticklabels(df_plot['bsss'], rotation=90)
    axes[i].set_xlabel("Center residues", fontsize=13)
    axes[i].set_ylabel(title, fontsize=13)

for j in range(len(features), len(axes)):
    fig.delaxes(axes[j])

plt.tight_layout()
plt.show()

Binding site sequence composition

Code
amino_acid_map = {
    'ALA': 'A', 'ARG': 'R', 'ASN': 'N', 'ASP': 'D', 'CYS': 'C',
    'GLN': 'Q', 'GLU': 'E', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I',
    'LEU': 'L', 'LYS': 'K', 'MET': 'M', 'PHE': 'F', 'PRO': 'P',
    'SER': 'S', 'THR': 'T', 'TRP': 'W', 'TYR': 'Y', 'VAL': 'V'
}

from collections import Counter
from ast import literal_eval
from matplotlib.gridspec import GridSpec
import warnings
warnings.filterwarnings("ignore", message="Attempting to set identical low and high xlims")

def convert_to_single_letter(aa_list):
    if type(aa_list) == str:
        aa_list = literal_eval(aa_list)
    return [amino_acid_map[aa] for aa in aa_list]

def create_sequence_visualizations(df, max_letters_per_row=20):
    for idx, row in df.iterrows():
        bsss = row['bsss']
        AAss = row['AAss']
        single_letter_sequence = convert_to_single_letter(AAss)
        
        freq_counter = Counter(single_letter_sequence)
        total_aa = len(single_letter_sequence)
        frequencies = {aa: freq / total_aa for aa, freq in freq_counter.items()}
        
        cmap = plt.get_cmap('viridis')
        norm = plt.Normalize(0, max(frequencies.values()) if frequencies else 1)
        
        n_rows = (len(single_letter_sequence) + max_letters_per_row - 1) // max_letters_per_row
        fig = plt.figure(figsize=(max_letters_per_row * 0.6, n_rows * 1.2 + 0.5))
        
        gs = GridSpec(n_rows + 1, 1, height_ratios=[1] * n_rows + [0.1], hspace=0.3)
        
        for row_idx in range(n_rows):
            start_idx = row_idx * max_letters_per_row
            end_idx = min((row_idx + 1) * max_letters_per_row, len(single_letter_sequence))
            ax = fig.add_subplot(gs[row_idx, 0])
            ax.set_xlim(0, max_letters_per_row)
            ax.set_ylim(0, 1)
            ax.axis('off')
            
            for i, aa in enumerate(single_letter_sequence[start_idx:end_idx]):
                freq = frequencies[aa]
                color = cmap(norm(freq))
                ax.text(i + 0.5, 0.5, aa, ha='center', va='center', fontsize=24, color=color, fontweight='bold')
        
        cbar_ax = fig.add_subplot(gs[-1, 0])
        sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
        sm.set_array([])
        cbar = plt.colorbar(sm, cax=cbar_ax, orientation='horizontal')
        cbar.set_label('Frequency', fontsize=12)
        cbar.ax.tick_params(labelsize=12)
        
        plt.suptitle(f"Center residue {bsss}", fontsize=14)
        plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
        plt.show()
            
create_sequence_visualizations(df_plot)

Download

To download all the seeds and score files for this entry Click Here!

P23942
P40197