SURFACE-Bind
  • Home
  • Analysis
  • Protein Families
    • Enzymes
    • Receptors
    • Transporters
    • Miscellaneous
    • Unclassified
    • Unmatched
  • About
  1. SLC
  2. Q6ZQN7

  • Active_transporters
    • O15438
    • O15439
    • O15440
    • O60706
    • O94911
    • O95342
    • O95477
    • P05023
    • P08183
    • P13637
    • P21439
    • P23634
    • P33527
    • P50993
    • P78363
    • Q2M3G0
    • Q4VNC0
    • Q5T3U5
    • Q8IUA7
    • Q8IZY2
    • Q8N139
    • Q8WWZ7
    • Q9BZC7
    • Q9H7F0
    • Q9H172
    • Q9H222
    • Q9HD20
    • Q9NP78
    • Q9NQ11
    • Q86UK0
    • Q86UQ4
    • Q96J65
    • Q01814
    • Q13733
    • Q16720
    • Q92887
    • Q99758

  • AuxillaryTransportUnit
    • A6NFC5
    • O60359
    • O60939
    • P05026
    • P14415
    • P51164
    • P54709
    • P62955
    • P98161
    • Q4KMZ8
    • Q5VU97
    • Q5VXU1
    • Q7Z442
    • Q7Z443
    • Q8IWT1
    • Q8N8D7
    • Q8TDX9
    • Q8WXS4
    • Q8WXS5
    • Q9BXT2
    • Q9NPA1
    • Q9NTG1
    • Q9NY72
    • Q9UBN1
    • Q9UF02
    • Q9UN42
    • Q9Y691
    • Q86W47
    • Q06432
    • Q07699
    • Q16558

  • Channels
    • A5X5Y0
    • A8MPY1
    • O00591
    • O14764
    • O15399
    • O15547
    • O43315
    • O43424
    • O43497
    • O60391
    • O75311
    • O94778
    • O95264
    • O95279
    • P02708
    • P07510
    • P11230
    • P14867
    • P17787
    • P18505
    • P18507
    • P23415
    • P23416
    • P24046
    • P28472
    • P28476
    • P29972
    • P30301
    • P30532
    • P30926
    • P31644
    • P32297
    • P34903
    • P35498
    • P35499
    • P36544
    • P39086
    • P41181
    • P42261
    • P42262
    • P42263
    • P43681
    • P46098
    • P47869
    • P47870
    • P48050
    • P48058
    • P48167
    • P48169
    • P48549
    • P51575
    • P51801
    • P55064
    • P55087
    • P56373
    • P78334
    • Q7Z418
    • Q8N1C3
    • Q8TCU5
    • Q8TDN1
    • Q8TDN2
    • Q8WXA8
    • Q9BSA4
    • Q9C0H2
    • Q9GZU1
    • Q9GZZ6
    • Q9H1D0
    • Q9H313
    • Q9HBA0
    • Q9NQA5
    • Q9NY46
    • Q9P0L9
    • Q9P0X4
    • Q9UBL9
    • Q9UGM1
    • Q9UI33
    • Q9ULK0
    • Q9ULQ1
    • Q9UN88
    • Q9UQD0
    • Q9Y5S1
    • Q9Y5Y9
    • Q70Z44
    • Q96KK3
    • Q96PS8
    • Q401N2
    • Q01118
    • Q04844
    • Q05586
    • Q05901
    • Q07001
    • Q12879
    • Q13002
    • Q13003
    • Q13224
    • Q13563
    • Q13936
    • Q14500
    • Q14524
    • Q14957
    • Q15822
    • Q15825
    • Q15858
    • Q16099
    • Q16445
    • Q16478
    • Q99250
    • Q99571
    • Q99572
    • Q99928

  • Other_transporters
    • A6NH21
    • Q5GH77
    • Q8NFU0
    • Q8NFU1
    • Q9NRX5
    • Q86VE9

  • SLC
    • A0AV02
    • A0PJK1
    • A1A5C7
    • A4IF30
    • A6NNN8
    • G3V0H7
    • O00337
    • O00341
    • O15375
    • O15431
    • O43511
    • O43826
    • O43868
    • O60669
    • O94956
    • O95436
    • O95528
    • O95907
    • P02730
    • P08195
    • P09131
    • P13866
    • P19634
    • P32418
    • P40879
    • P41440
    • P43003
    • P43004
    • P43005
    • P43007
    • P46059
    • P46721
    • P48067
    • P48664
    • P48764
    • P50443
    • P52569
    • P53985
    • P54219
    • P55011
    • P55017
    • P57103
    • P58743
    • P82251
    • Q2Y0W8
    • Q3KNW5
    • Q4U2R8
    • Q5PT55
    • Q6NVV3
    • Q6P5W5
    • Q6PXP3
    • Q6T423
    • Q6U841
    • Q6YBV0
    • Q6ZMD2
    • Q6ZMH5
    • Q6ZQN7
    • Q6ZSM3
    • Q7L0J3
    • Q7LBE3
    • Q7RTT9
    • Q08AI6
    • Q8IWA5
    • Q8IY34
    • Q8IZD6
    • Q8N4M1
    • Q8N130
    • Q8N434
    • Q8N695
    • Q8N697
    • Q8NCS7
    • Q8NDX2
    • Q8NFF2
    • Q8NHS3
    • Q8WUG5
    • Q8WWI5
    • Q8WWT9
    • Q9BXP2
    • Q9BXS9
    • Q9BY07
    • Q9BYT1
    • Q9BZD2
    • Q9BZV2
    • Q9BZW2
    • Q9C0K1
    • Q9H2B4
    • Q9H2H9
    • Q9H2X9
    • Q9H2Y9
    • Q9H015
    • Q9H841
    • Q9HAS3
    • Q9HC58
    • Q9NP94
    • Q9NPD5
    • Q9NRM0
    • Q9NSA0
    • Q9NUM3
    • Q9NY64
    • Q9NYB5
    • Q9P2U7
    • Q9P2U8
    • Q9UBD6
    • Q9UBY0
    • Q9UGH3
    • Q9UHI7
    • Q9UHW9
    • Q9UI40
    • Q9UIG8
    • Q9UKG4
    • Q9ULF5
    • Q9UP95
    • Q9UPR5
    • Q9Y6L6
    • Q9Y6M7
    • Q9Y6R1
    • Q9Y267
    • Q9Y666
    • Q9Y694
    • Q53GD3
    • Q71RS6
    • Q96GZ6
    • Q96JW4
    • Q96N87
    • Q96QE2
    • Q96RN1
    • Q96T83
    • Q495M3
    • Q496J9
    • Q504Y0
    • Q969I6
    • Q01650
    • Q05940
    • Q06495
    • Q07837
    • Q12908
    • Q13183
    • Q13336
    • Q13433
    • Q13621
    • Q14542
    • Q14973
    • Q15758
    • Q15849
    • Q16348
    • Q16572
    • Q92581
    • Q92911
    • Q92959

  • Transporters

On this page

  • General information
  • AlphaFold model
  • Surface representation - binding sites
  • All detected seeds aligned
  • Seed scores per sites
  • Binding site metrics
  • Binding site sequence composition
  • Download
  1. SLC
  2. Q6ZQN7

Q6ZQN7

Author

Hamed Khakzad

Published

August 10, 2024

General information

Code
import requests
import urllib3
urllib3.disable_warnings()

def fetch_uniprot_data(uniprot_id):
    url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.json"
    response = requests.get(url, verify=False)  # Disable SSL verification
    response.raise_for_status()  # Raise an error for bad status codes
    return response.json()

def display_uniprot_data(data):
    primary_accession = data.get('primaryAccession', 'N/A')
    protein_name = data.get('proteinDescription', {}).get('recommendedName', {}).get('fullName', {}).get('value', 'N/A')
    gene_name = data.get('gene', [{'geneName': {'value': 'N/A'}}])[0]['geneName']['value']
    organism = data.get('organism', {}).get('scientificName', 'N/A')
    
    function_comment = next((comment for comment in data.get('comments', []) if comment['commentType'] == "FUNCTION"), None)
    function = function_comment['texts'][0]['value'] if function_comment else 'N/A'

    # Printing the data
    print(f"UniProt ID: {primary_accession}")
    print(f"Protein Name: {protein_name}")
    print(f"Organism: {organism}")
    print(f"Function: {function}")

# Replace this with the UniProt ID you want to fetch
uniprot_id = "Q6ZQN7"
data = fetch_uniprot_data(uniprot_id)
display_uniprot_data(data)
UniProt ID: Q6ZQN7
Protein Name: Solute carrier organic anion transporter family member 4C1
Organism: Homo sapiens
Function: Mediates the transport of organic anions such as steroids (estrone 3-sulfate, chenodeoxycholate, glycocholate) and thyroid hormones (3,3',5-triiodo-L-thyronine (T3), L-thyroxine (T4)), in the kidney (PubMed:14993604, PubMed:19129463, PubMed:20610891). Capable of transporting cAMP and pharmacological substances such as digoxin, ouabain and methotrexate (PubMed:14993604). Transport is independent of sodium, chloride ion, and ATP (PubMed:14993604). Transport activity is stimulated by an acidic extracellular environment due to increased substrate affinity to the transporter (PubMed:19129463). The driving force for this transport activity is currently not known (By similarity). The role of hydrogencarbonate (HCO3(-), bicarbonate) as the probable counteranion that exchanges for organic anions is still not well defined (PubMed:19129463). Functions as an uptake transporter at the apical membrane, suggesting a role in renal reabsorption (By similarity). Involved in the renal secretion of the uremic toxin ADMA (N(omega),N(omega)-dimethyl-L-arginine or asymmetrical dimethylarginine), which is associated to cardiovascular events and mortality, and the structurally related amino acids L-arginine and L-homoarginine (a cardioprotective biomarker) (PubMed:30865704). Can act bidirectionally, suggesting a dual protective role of this transport protein; exporting L-homoarginine after being synthesized in proximal tubule cells, and mediating uptake of ADMA from the blood into proximal tubule cells where it is degraded by the enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) (PubMed:30865704, PubMed:32642843). May be involved in sperm maturation by enabling directed movement of organic anions and compounds within or between cells (By similarity). This ion-transporting process is important to maintain the strict epididymal homeostasis necessary for sperm maturation (By similarity). May have a role in secretory functions since seminal vesicle epithelial cells are assumed to secrete proteins involved in decapacitation by modifying surface proteins to facilitate the acquisition of the ability to fertilize the egg (By similarity)

More information:   

AlphaFold model

Surface representation - binding sites

The computed point cloud for pLDDT > 0.6. Each atom is sampled on average by 10 points.

To see the predicted binding interfaces, you can choose color theme “uncertainty”.

  • Go to the “Controls Panel”

  • Below “Components”, to the right, click on “…”

  • “Set Coloring” by “Atom Property”, and “Uncertainty/Disorder”

All detected seeds aligned

Seed scores per sites

Code
import re
import pandas as pd
import os
import plotly.express as px

ID = "Q6ZQN7"
data_list = []

name_pattern = re.compile(r'name: (\S+)')
score_pattern = re.compile(r'score: (\d+\.\d+)')
desc_dist_score_pattern = re.compile(r'desc_dist_score: (\d+\.\d+)')

directory = f"/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/Surfaceome_top100_per_site/{ID}_A"

for filename in os.listdir(directory):
    if filename.startswith("output_sorted_") and filename.endswith(".score"):
        filepath = os.path.join(directory, filename)
        with open(filepath, 'r') as file:
            for line in file:
                name_match = name_pattern.search(line)
                score_match = score_pattern.search(line)
                desc_dist_score_match = desc_dist_score_pattern.search(line)
                
                if name_match and score_match and desc_dist_score_match:
                    name = name_match.group(1)
                    score = float(score_match.group(1))
                    desc_dist_score = float(desc_dist_score_match.group(1))
                    
                    simple_filename = filename.replace("output_sorted_", "").replace(".score", "")
                    data_list.append({
                        'name': name[:-1],
                        'score': score,
                        'desc_dist_score': desc_dist_score,
                        'file': simple_filename
                    })

data = pd.DataFrame(data_list)

fig = px.scatter(
    data,
    x='score',
    y='desc_dist_score',
    color='file',
    title='Score vs Desc Dist Score',
    labels={'score': 'Score', 'desc_dist_score': 'Desc Dist Score'},
    hover_data={'name': True}
)

fig.update_layout(
    legend_title_text='File',
    legend=dict(
        yanchor="top",
        y=0.99,
        xanchor="left",
        x=1.05
    )
)

fig.show()

Binding site metrics

Code
import pandas as pd
pd.options.mode.chained_assignment = None
import plotly.express as px

df_total = pd.read_csv('/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/database/df_flattened.csv')
df_plot = df_total[df_total['acc_flat'] == ID]
df_plot ['Total seeds'] = df_plot.loc[:,['seedss_a','seedss_b']].sum(axis=1)
df_plot.loc[:, ["acc_flat", "main_classs", "sub_classs", "seedss_a", "seedss_b", "areass", "bsss", "hpss"]]
acc_flat main_classs sub_classs seedss_a seedss_b areass bsss hpss
4949 Q6ZQN7 Transporters SLC 166 700 1112.93848 89 6.09999
Code
import math
import matplotlib.pyplot as plt

features = ['seedss_a', 'seedss_b', 'areass', 'hpss']
titles = ['Alpha seeds', 'Beta seeds', 'Area', 'Hydrophobicity']
num_features = len(features)

if len(df_plot) > 8:
    num_rows = 2
    num_cols = 2
else:
    num_rows = 1
    num_cols = 4

fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(9, num_rows * 5))

axes = axes.flatten()
positions = range(1, len(df_plot) + 1)

for i, feature in enumerate(features):
    title = titles[i]
    axes[i].bar(positions, df_plot[feature], color=['blue', 'orange', 'green', 'red', 'purple', 'brown'])
    axes[i].set_title(title, fontsize=13)
    axes[i].set_xticks(positions)
    axes[i].set_xticklabels(df_plot['bsss'], rotation=90)
    axes[i].set_xlabel("Center residues", fontsize=13)
    axes[i].set_ylabel(title, fontsize=13)

for j in range(len(features), len(axes)):
    fig.delaxes(axes[j])

plt.tight_layout()
plt.show()

Binding site sequence composition

Code
amino_acid_map = {
    'ALA': 'A', 'ARG': 'R', 'ASN': 'N', 'ASP': 'D', 'CYS': 'C',
    'GLN': 'Q', 'GLU': 'E', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I',
    'LEU': 'L', 'LYS': 'K', 'MET': 'M', 'PHE': 'F', 'PRO': 'P',
    'SER': 'S', 'THR': 'T', 'TRP': 'W', 'TYR': 'Y', 'VAL': 'V'
}

from collections import Counter
from ast import literal_eval
from matplotlib.gridspec import GridSpec
import warnings
warnings.filterwarnings("ignore", message="Attempting to set identical low and high xlims")

def convert_to_single_letter(aa_list):
    if type(aa_list) == str:
        aa_list = literal_eval(aa_list)
    return [amino_acid_map[aa] for aa in aa_list]

def create_sequence_visualizations(df, max_letters_per_row=20):
    for idx, row in df.iterrows():
        bsss = row['bsss']
        AAss = row['AAss']
        single_letter_sequence = convert_to_single_letter(AAss)
        
        freq_counter = Counter(single_letter_sequence)
        total_aa = len(single_letter_sequence)
        frequencies = {aa: freq / total_aa for aa, freq in freq_counter.items()}
        
        cmap = plt.get_cmap('viridis')
        norm = plt.Normalize(0, max(frequencies.values()) if frequencies else 1)
        
        n_rows = (len(single_letter_sequence) + max_letters_per_row - 1) // max_letters_per_row
        fig = plt.figure(figsize=(max_letters_per_row * 0.6, n_rows * 1.2 + 0.5))
        
        gs = GridSpec(n_rows + 1, 1, height_ratios=[1] * n_rows + [0.1], hspace=0.3)
        
        for row_idx in range(n_rows):
            start_idx = row_idx * max_letters_per_row
            end_idx = min((row_idx + 1) * max_letters_per_row, len(single_letter_sequence))
            ax = fig.add_subplot(gs[row_idx, 0])
            ax.set_xlim(0, max_letters_per_row)
            ax.set_ylim(0, 1)
            ax.axis('off')
            
            for i, aa in enumerate(single_letter_sequence[start_idx:end_idx]):
                freq = frequencies[aa]
                color = cmap(norm(freq))
                ax.text(i + 0.5, 0.5, aa, ha='center', va='center', fontsize=24, color=color, fontweight='bold')
        
        cbar_ax = fig.add_subplot(gs[-1, 0])
        sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
        sm.set_array([])
        cbar = plt.colorbar(sm, cax=cbar_ax, orientation='horizontal')
        cbar.set_label('Frequency', fontsize=12)
        cbar.ax.tick_params(labelsize=12)
        
        plt.suptitle(f"Center residue {bsss}", fontsize=14)
        plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
        plt.show()
            
create_sequence_visualizations(df_plot)

Download

To download all the seeds and score files for this entry Click Here!

Q6ZMH5
Q6ZSM3